_images/noninteractive.png
02

08

04

0z

02

04

ploto
plott
plo
plot3
plotd
plots
plots
plot7

25

s

125

_images/vplotcontainer.png
Vertical container

More Bessels

_static/minus.png

_images/container_example.png
Chaco Plot

_images/ipython_basic.png
806 Chaco Plot

ors

05

o0z

00

025

_images/edit_line.png
Simple line plot

Line Editor

_images/traits.png
800 Chaco Plot
blue

Color.

Marker: [square

Size: 4

_images/scatter.png
Basic scatter plot.

Scatter Plot

_images/line_connectedhold_plot.png
Te]
(o]

<
o~

m
o~

N —l
(o] (o]

9214d 3003

o
o~

[0)]
—

60

50

40

30

20

10

Days

search.html

 Navigation

 		chaco 4.3.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2008-2011, Enthought, Inc..
 Last updated on Oct 14, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		4.3.0

_images/contour_plot.png
Basic Contour Plot

My First Contour Plot

_static/comment-close.png

_images/lines.png
Chaco Plot

simple line plots

_static/up-pressed.png

user_manual/tutorial_hyetograph.html

 Navigation

 		chaco 4.3.0 documentation »

Creating an interactive Hyetograph with Chaco and Traits

Overview

The perfect rainstorm (not to be confused with The Perfect Storm) has
a rainfall pattern that can be mathematically modelled. The rain
starts light, progressively gets heavier until halfway though the
storm, gets lighter again, and eventually stops. Plots of the
rainfall intensity in relation to time are called hyetographs.

This tutorial builds a small application that takes a tiny database of
coefficients, and along with user selected values, displays
hyetographs. The user provides the duration of the storm, the year of
the storm, and one of four counties in Texas. Then using a slider
specifying the Curve Number (determined based on the permeability of
the soil) a plot shows the intensity vs. time hyetograph plots.

Development Setup

To run this demo you must have Chaco and its dependencies installed,

		Traits

		TraitsGUI

		Enable

Why use Traits for this application?

		Event notification Every time that a trait is changed it sends
out notification to all listening functions. This means when a
trait is changed in places such as the UI the program will then
notify other traits or functions automatically.

		Typing Within traits you are allowed to define trats as certain
types. Say you have a trait named Name, you can then define it to
be a string. Then when you visualize it using the UI, it will
interprit the data as a string.

		UI-Generation After setting up your traits and performing all
the calculations, the Trait’s will automatically generate a GUI
view without needing any additional programming.

Importing the necessary functions

In This tutorial we will be using numpy, traits, traitsui, and chaco.
In calling your function you want to specify where the function is and
then import it. The following code snippet imports all the names that
will be used for our application.

from traits.api \
 import HasTraits, Int, Range, Array, Enum, on_trait_change
from traitsui.api import View, Item
from chaco.chaco_plot_editor import ChacoPlotItem

Trait Definitions

This application only requires one class that will contain the Traits
and mathematical calculations together. Classes that contain Traits
must inherit from the HasTraits function. Python’s multiple
inheritance allows for mixing HasTraits objects with other class
hierarchies if needed.

Within this class we define all the class variables using Traits types
which will later be used in the UI. These traits are set to equal
their type similar to many typed languages.

class Hyetograph(HasTraits):
 """ Creates a simple hyetograph demo. """
 timeline = Array
 intensity = Array
 nrcs = Array
 duration = Int(12, desc='In Hours')
 year_storm = Enum(2, 10, 25, 100)
 county = Enum('Brazos', 'Dallas', 'El Paso', 'Harris')
 curve_number = Range(70, 100)
 plot_type = Enum('line', 'scatter')

The above code snippet shows a number of Traits features,

		The naming convention with traits is that types are capitalized.

		An Array is an array, an Int is an integer, an Enum is a single
value from a list of options, and a Range is a value between
two numbers.

		All traits get a default value, such as whats done in the
Arrays, or they can be assigned an initial value as is done in
the duration trait.

		Descriptions can be added to traits, such as is done in
duration. This description is not visible except when viewing
the trait in a TraitsUI view, and then the description is seen
when the mouse hovers over the variable.

		Traits are always contained within the class definition, and
each instance of the class will have a unique copy of the traits.

The Traits API Reference contains more information about the standard
Trait types; see the trait_types module in the Traits API Reference [http://code.enthought.com/projects/files/ETS3_API/traits.trait_types.html].

Setting up the User Interface (UI)

HasTraits classes will automatically generate a view that contains an
editable entry for each trait within the class. But a user-defined
view usually looks better, so we’ll use View and Items to change the
default class view. Changing the default UI is done by creating a
trait on the class that is of the View type. Multiple View traits can
be defined and used, with the one named traits_view being used as
the default.

Continuing with our application, here is the View definition.

class Hyetograph(HasTraits):

 <... snip ...>

 view1 = View(Item('plot_type'),
 ChacoPlotItem('timeline', 'intensity',
 type_trait='plot_type',
 resizable=True,
 x_label='Time (hr)',
 y_label='Intensity (in/hr)',
 color='blue',
 bgcolor='white',
 border_visible=True,
 border_width=1,
 padding_bg_color='lightgray'),
 Item(name='duration'),
 Item(name='year_storm'),
 Item(name='county'),

 # After infiltration using the nrcs curve number method.
 ChacoPlotItem('timeline', 'nrcs',
 type_trait='plot_type',
 resizable=True,
 x_label='Time',
 y_label='Intensity',
 color='blue',
 bgcolor='white',
 border_visible=True,
 border_width=1,
 padding_bg_color='lightgray'),
 Item('curve_number'),
 resizable = True,
 width=800, height=800)

Views generally contain Item objects and named parameters. Views can
also contain Groups of Items as well as many other types of layout
features not covered here. By default, Item objects take a string of
the trait to edit. For example, the Item(name='county') will
create a pull-down menu in the UI showing the four valid counties that
the user can select from.

There are three important observations to be seen in the above view
definition. First, there are two Chaco plot items embedded in the
view. The top plot is the intensity versus time and the bottom is
nrcs versus time. Second, default window will be sized at 800 by 800
pixels, but the option resizable = True will allow the user to
change the size of the window. And third, the traits are split up so
3 of them are displayed below the first plot and only 1 is displayed
below the second. Here is a snapshot of what our application will
display. The plots are empty because we have yet to populate the data
traits

[image: ../_images/tutorial_hyetograph_nodata.png]

Performing the Hyetograph Calculations

The UI for the application is complete, however there is no data.
Changing the traits within the GUI by moving the sliders and typing in
numbers does nothing because they’re hooked up to nothing and there
are no listeners on the trait event notifications. So , next we’ll
add some hyetograph calculations that modify the intensity and nrcs
Array traits.

def calculate_intensity(self):
 """ The Hyetograph calculations. """
 # Assigning A, B, and C values based on year, storm, and county
 counties = {'Brazos': 0, 'Dallas': 3, 'El Paso': 6, 'Harris': 9}
 years = {
 2 : [65, 8, .806, 54, 8.3, .791, 24, 9.5, .797, 68, 7.9, .800],
 10: [80, 8.5, .763, 78, 8.7, .777, 42, 12., .795,81, 7.7, .753],
 25: [89, 8.5, .754, 90, 8.7, .774, 60, 12.,.843, 81, 7.7, .724],
 100: [96, 8., .730, 106, 8.3, .762, 65, 9.5, .825, 91, 7.9, .706]
 }
 year = years[self.year_storm]
 value = counties[self.county]
 a, b, c = year[value], year[value+1], year[value+2]

 self.timeline=range(2, self.duration + 1, 2)
 intensity=a / (self.timeline * 60 + b)**c
 cumdepth=intensity * self.timeline

 temp=cumdepth[0]
 result=[]
 for i in cumdepth[1:]:
 result.append(i-temp)
 temp=i
 result.insert(0,cumdepth[0])

 # Alternating block method implementation.
 result.reverse()
 switch = True
 o, e = [], []
 for i in result:
 if switch:
 o.append(i)
 else:
 e.append(i)
 switch = not switch
 e.reverse()
 result = o + e
 self.intensity = result

def calculate_runoff(self):
 """ NRCS method to get run-off based on permeability of ground. """
 s = (1000 / self.curve_number) - 10
 a = self.intensity - (.2 * s)
 vr = a**2 / (self.intensity + (.8 * s))
 # There's no such thing as negative run-off.
 for i in range(0, len(a)):
 if a[i] <= 0:
 vr[i] = 0
 self.nrcs = vr

In the calculation functions, the traits are treated just like normal
class attributes. Behind the scenes, Traits will automatically cast
compatible types such as ints to Floats, but will raise an exception
if the user tries to pass a string to an Dict trait.

Recalculating when event notification occurs

Calling the calculation functions will update the data, but nothing is
going to change in the GUI. The next step is to link the data to the
GUI using a Traits static handler. Static handlers are declared
either with a decorator or through a function name that follows a
specific convention. Alternatively, a dynamic handler is set up by
calling a function at runtime, providing for on-the-fly event
processing. Below is a function that calls the two calculation
functions. The interesting line is the decorator,
@on_trait_change that tells Traits to call the function whenever
any of the values within the list of traits change.

@on_trait_change('duration, year_storm, county, curve_number')
def _perform_calculations(self):
 self.calculate_intensity()
 self.calculate_runoff()

		So now when the application is run, when the duration trait is

		changed or any of the four listed traits change, the calculation
functions are automatically called and the data changes. And these
traits will automatically change when the user adjusts the widgets
in the UI. So when the user changes the duration in the UI
from 12 hours to 24 hours this will automatically effect both of
the plots since the listeners force a recalculation of both of the
functions.

Showing the Display

In order to start the GUI application an instance of the class must be
instantiated, and then a configure_traits() call is done. However we
must first call the data calculation functions from within the class
to initialize the data arrays. Here’s the last piece of the program.

 def start(self):
 self._perform_calculations()
 self.configure_traits()

f=Hyetograph()
f.start()

start() performs the calculations needed for the Arrays used to plot,
and then triggers the UI. The application is complete, and if you now
run the program, you should get a running application that resembles
the following image,

[image: ../_images/tutorial_hyetograph_final.png]
Congratulations!

Source Code

The final version of the program, hyetograph.py.

from traits.api \
 import HasTraits, Int, Range, Array, Enum, on_trait_change
from traitsui.api import View, Item
from chaco.chaco_plot_editor import ChacoPlotItem

class Hyetograph(HasTraits):
 """ Creates a simple hyetograph demo. """
 timeline = Array
 intensity = Array
 nrcs = Array
 duration = Int(12, desc='In Hours')
 year_storm = Enum(2, 10, 25, 100)
 county = Enum('Brazos', 'Dallas', 'El Paso', 'Harris')
 curve_number = Range(70, 100)
 plot_type = Enum('line', 'scatter')

 view1 = View(Item('plot_type'),
 ChacoPlotItem('timeline', 'intensity',
 type_trait='plot_type',
 resizable=True,
 x_label='Time (hr)',
 y_label='Intensity (in/hr)',
 color='blue',
 bgcolor='white',
 border_visible=True,
 border_width=1,
 padding_bg_color='lightgray'),
 Item(name='duration'),
 Item(name='year_storm'),
 Item(name='county'),

 # After infiltration using the nrcs curve number method.
 ChacoPlotItem('timeline', 'nrcs',
 type_trait='plot_type',
 resizable=True,
 x_label='Time',
 y_label='Intensity',
 color='blue',
 bgcolor='white',
 border_visible=True,
 border_width=1,
 padding_bg_color='lightgray'),
 Item('curve_number'),
 resizable = True,
 width=800, height=800)

 def calculate_intensity(self):
 """ The Hyetograph calculations. """
 # Assigning A, B, and C values based on year, storm, and county
 counties = {'Brazos': 0, 'Dallas': 3, 'El Paso': 6, 'Harris': 9}
 years = {
 2 : [65, 8, .806, 54, 8.3, .791, 24, 9.5, .797, 68, 7.9, .800],
 10: [80, 8.5, .763, 78, 8.7, .777, 42, 12., .795,81, 7.7, .753],
 25: [89, 8.5, .754, 90, 8.7, .774, 60, 12.,.843, 81, 7.7, .724],
 100: [96, 8., .730, 106, 8.3, .762, 65, 9.5, .825, 91, 7.9, .706]
 }
 year = years[self.year_storm]
 value = counties[self.county]
 a, b, c = year[value], year[value+1], year[value+2]

 self.timeline=range(2, self.duration + 1, 2)
 intensity=a / (self.timeline * 60 + b)**c
 cumdepth=intensity * self.timeline

 temp=cumdepth[0]
 result=[]
 for i in cumdepth[1:]:
 result.append(i-temp)
 temp=i
 result.insert(0,cumdepth[0])

 # Alternating block method implementation.
 result.reverse()
 switch = True
 o, e = [], []
 for i in result:
 if switch:
 o.append(i)
 else:
 e.append(i)
 switch = not switch
 e.reverse()
 result = o + e
 self.intensity = result

 def calculate_runoff(self):
 """ NRCS method to get run-off based on permeability of ground. """
 s = (1000 / self.curve_number) - 10
 a = self.intensity - (.2 * s)
 vr = a**2 / (self.intensity + (.8 * s))
 # There's no such thing as negative run-off.
 for i in range(0, len(a)):
 if a[i] <= 0:
 vr[i] = 0
 self.nrcs = vr

 @on_trait_change('duration, year_storm, county, curve_number')
 def _perform_calculations(self):
 self.calculate_intensity()
 self.calculate_runoff()

 def start(self):
 self._perform_calculations()
 self.configure_traits()

f=Hyetograph()
f.start()

 © Copyright 2008-2011, Enthought, Inc..
 Last updated on Oct 14, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		4.3.0

_images/polygon_plot1.png
3.5

2.5

_images/nans_plot.png
Nan Test

Plots with NaNs

// ’\ ?(
// \ Y \
ey

_images/bar_plot1.png
Frequency

0.3

o
[N)

©
il

10

20 30
Median house prices

40

_images/image_from_file.png
Edit properties

capitoljpg

20

_static/comment.png

_images/two_plots.png

_static/ajax-loader.gif

_images/tabbed_plots2.png
600 Edit properties

Plot1 | Plot2

_static/e-logo-rev.png

_images/jitter_plot.png
10

20 30
Median house prices

40

50

user_manual/tutorial_ipython.html

 Navigation

 		chaco 4.3.0 documentation »

Exploring Chaco with IPython

Chaco has an interactive plotting mode similar to, but currently more limited
than matplotlib’s. This plotting mode is also available as an Envisage plugin,
and so can be made available within end-user applications that feature an
Envisage-based Python prompt.

Basic Usage

To get started, you need to run iPython with the --gui=wx option enabled,
so that the iPython and wx event loops interact correctly [1]

ipython --gui=wx

You could instead start in -pylab mode if you prefer, which has the advantage of
pre-loading numpy and some other useful libraries.
Once you have the iPython prompt, you can accesss the Chaco shell mode commands
via:

In [1]: from chaco.shell import *

We’ll start by creating some data that we want to plot:

In [2]: from numpy import *
In [3]: x = linspace(-2*pi,2*pi, 100)
In [4]: y = sin(x)
In [5]: plot(x, y)

[image: ../_images/ipython_basic.png]
If you experiment with the plot, you’ll see that it has the standard
Chaco pan and zoom tools enabled. As with Matplotlib, you can specify
options for the display of the plot as additional arguments and keyword
arguments to the plot command. The most important of these is is the
format string argument, which resembles the Matplotlib format strings:

In [6]: plot(x, y, 'g:')

This creates a green, dotted line plot of the data. You could instead
create a red scatter plot of the data with circles for markers using:

In [7]: plot(x, y, 'ro')

You’ll notice that each of these plot commands replaces the current plot
with the new plot. If you want to overlay the plots, you need to instruct
Chaco to hold() the plots:

In [8]: hold()
In [9]: plot(x, cos(x), 'b-')
In [10]: plot(x, sin(2*x), 'y^')

[image: ../_images/ipython_multi.png]
Calling hold() again will toggle back to the previous
behaviour:

In [11]: hold()

You can also plot multiple curves with one plot command. The following
single plot call is equivalent to the above three:

In [12]: plot(x, y, 'ro', x, cos(x), 'b-', x, sin(2*x), 'y^')

Types of Plots

The Chaco shell interface supports a subset of the standard Chaco plots.
You can do line, scatter, image, pseudocolor, and contour plots.

To illustrate some of these different plot types, let’s create a couple
of 2D gaussians and plot them:

In [13]: x1 = random.normal(-0.5, 1., 100)
In [14]: y1 = random.normal(-1.25, 0.5, 100)
In [15]: x2 = random.normal(0 ,0.25, 50)
In [16]: y2 = random.normal(0, 0.5, 50)
In [17]: plot(x1, y1, 'ro', x2, y2, 'go')

We’ll now create a kernel density estimator for the combined data set,
and plot that:

In [18]: x = concatenate((x1, x2))
In [19]: y = concatenate((y1, y2))
In [20]: dataset = array([x, y])
In [21]: import scipy.stats
In [22]: kde = scipy.stats.gaussian_kde(dataset)

Now that we have the distribution, we sample it at a bunch of points on a grid:

In [23]: xs = linspace(-4, 4, 100)
In [24]: ys = linspace(-4, 4, 100)
In [25]: xpoints, ypoints = meshgrid(xs, ys)
In [26]: points = array([xpoints.flatten(), ypoints.flatten()])
In [27]: z = kde(points)
In [28]: z.shape = (100, 100)

Finally, we can plot the contours. For grid-based plots like contours and images,
we need to supply the x- and y-coordinates of the edges of the pixels, rather than
the centers:

In [29]: xedges = linspace(-4.06125, 4.06125, 101)
In [30]: yedges = linspace(-4.06125, 4.06125, 101)
In [31]: hold()
In [32]: contour(xedges, yedges, z)

[image: ../_images/ipython_kde.png]
Other related plotting commands which are available include imshow(), contourf()
and pshow(). For example:

In [33]: pshow(xedges, yedges, z)

will plot a pseudo-color image of our sampling of the KDE.

Making Things Pretty

You can add plot and axis titles to your plot easily:

In [34]: title('The Kernel Density Estimator')
In [35]: xtitle('x')
In [36]: ytitle('y')

and you can toggle whether or not grids are drawn by:

In [37]: xgrid()
In [38]: ygrid()

and similarly:

In [39]: legend()

toggles the display of the legend. These toggling commands can optionally take a
boolean value which instead of toggling the display will either always show or hide
the grid or legend. For example:

In [40]: legend(False)

will ensure that the legend is hidden. You can toggle the axes completely with:

In [41]: xaxis()
In [42]: yaxis()

but you can additionally gain quite fine-grained control over display of the axes
by passing keyword arguments to these commands. For example, to display the y-axis
on the right instead of the left, you would do:

In [43]: yaxis(orientation='right')

You can see the complete set of available keyword arguments via ipython’s help:

In [44]: yaxis?
Base Class: <type 'function'>
String Form: <function yaxis at 0x1e4e25f0>
Namespace: Interactive
File: /Users/cwebster/src/ets/chaco/enthought/chaco/shell/commands.py
Definition: yaxis(**kwds)
Docstring:
 Configures the y-axis.

 Usage

 * ``yaxis()``: toggles the vertical axis on or off.
 * ``yaxis(**kwds)``: set parameters of the vertical axis.

 Parameters

 title : str
 The text of the title
 title_font : KivaFont('modern 12')
 The font in which to render the title
 title_color : color ('color_name' or (red, green, blue, [alpha]) tuple)
 The color in which to render the title
 tick_weight : float
...

If you have a plot in a state that you are happy with, you can save the current
image with the save() command:

In [45]: save('my_plot.png')

Log Plots and Time-Series

The Chaco ipython shell can create plots with logarithmic axes. If you know at the time
that you create the plot that you want log axes, you can use one of the commands
semilogx(), semilogy() or loglog() as you would the usual plot() command:

In [46]: x = linspace(0, 10, 101)
In [47]: y = exp(x**2)
In [48]: semilogy(x, y)

If you have already created a plot, and you decide that it would be clearer with a
logarithmic scale on an axis, you can set this with the xscale() and yscale()
commands:

In [49]: xscale('log')

You can set it back to a linear scale in the same way:

In [50]: xscale('linear')

Time axes are handled in a similar way. Chaco expects times to be represented as
floating point numbers giving seconds since the epoch, the same as time.time().
Given a plot with a set of index values expressed as times in this fashion, you
can specify the scale as 'time' and Chaco will display tick marks on the axis
appropriately:

In [51]: x = linspace(time.time(), time.time()+7*24*60*60, 360)
In [52]: y = random.uniform(size=360)
In [53]: plot(x, y)
In [54]: xscale('time')

Plot Management

In addition to the hold() command discussed earlier, there are several commands
that you can use to control the creation of new Chaco windows for plotting in to,
and determining which one is currently active:

In [55]: figure('fig2', 'My Second Plot')

creates a new window with the identifier 'fig2' which will have “My Second Plot”
displayed as the title of the window. Any new plots after this command will appear
in this window. You can switch to an existing window using the activate() command,
referring to the window either by index or name:

In [56]: activate(0)

will make the original plot window the current window, while:

In [57]: activate('fig2')

will switch back to our second window.

For advanced users, you can get a reference to the current Chaco plot object using the
curplot() command. When you have this, you then have full access to the programatic
Chaco plot API described elsewhere.

Finally, you can use the chaco.shell API from Python scripts instead of interactively
if you prefer. In this case, because you do not have ipython around to set up the GUI
mainloop with the --gui=wx option, you need to use the show()
command to start the GUI mainloop and display the windows that you have created.

Footnotes

		[1]		Starting from IPython 0.12, it is possible to use the Qt backend
with --gui=qt. Make sure that the environment variable QT_API
is set correctly, as described here [http://ipython.org/ipython-doc/dev/interactive/reference.html?highlight=qt_api#pyqt-and-pyside]

 © Copyright 2008-2011, Enthought, Inc..
 Last updated on Oct 14, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		4.3.0

_static/file.png

_images/filled_line_plot.png
Te]
(o]

<
o~

m
o~

N —l
(o] (o]

9214d 3003

o
o~

[0)]
—

o
—

Days

_images/multiaxis_using_Plot.png
Basic x-y plots

My First Line Plot
s

_images/image_from_file_plot.png

_images/financial_plot.png
Financial plot example

Financial Plot

_static/down-pressed.png

_images/tool_chooser_example.png
806 Tool Chooser

¥ Pantool
Tools: ¥ zoomtool
Dragzoom

_images/contour_line_plot.png
"
-

_images/script_oriented.png
Chaco Plot

First plot

_images/overlay_container_inset.png
806 Edit properties ‘

0z

01

_images/zoomable_colorbar.png
Colormapped scatter plot

Colormapped Scatter Plot with Pan/Zoom Color Bar

_images/scalar_function.png
Edit properties

075050250 02505075

_images/cmap_image_plot.png
Basic Colormapped Image Plot

My First Image Plot

_images/regression1.png
Regression Selection

04

_images/scatter_select.png
Scatter plot with selection

Scatter Plot With Selection

_images/errorbar_plot.png
san|eA

Items

_images/mylineplot.png
600 My line plot

sin(x)*x**3

100

1000

-0 B o s 10

_images/first_plot.png
Chaco Plot

sin(x) * x"3

user_manual/tutorial_wx.html

 Navigation

 		chaco 4.3.0 documentation »

WX-based Tutorial

 © Copyright 2008-2011, Enthought, Inc..
 Last updated on Oct 14, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		4.3.0

_images/connected_index_example.png
Connected Range, Flipped

_images/cmap_image_plot1.png
-2.5

X o

_images/tabbed_plots1.png
800 Edit properties

Plotl | piot2

_images/tutorial_hyetograph_final.png

_images/log_plot.png
Basic x-y log plots

Log Plot

—— expix)
—— gamma(y)
— san)
—x

— 2

—_—

_static/up.png

_images/scrollbar.png
Scrollbar example

_images/connected_range_example.png
Connected Range

_images/data_chooser_example.png
Data Chooser

_images/simple_line1.png
Simple line plot

Bessel functions

O Bessel]

Bessel]
O Bessel]

Bessel]
O Bessel]
— Bessel|
O Bessel]

Bessel]
O Bessel]
— Bessel |

_images/scales_test.png
Simple line plot

Bessel functions

O Bessel]
— Bessel|
O Bessel]
— Bessel|
O Bessel]
— Bessel |
O Bessel]
—— Bessel|
O Bessel]
— Bessel|

_images/tornado.png
Tornado plot

£
H
H

2460000 2480000 2500000 2520000 2540000 2560000

_images/cmap_scatter_plot.png
Median house prices

N
o

w
o

N
o

=
o

5

10 15 20 25 30
Percent lower status in the population

35

_images/h_container_colorbar.png
806

Edit properties

08

04

0z

0z

04

05

08

08

08

01

0

s

04

03

0z

_images/multiline_plot.png
<

m o —
sabueyd ad1ud 3203

o

60

50

40

30

20

10

Days

_images/traits_editor.png
Edit properties

Pt Eator

o
Ingex cara

Plot type: [scatter

Eq: [sin(x)

_images/image_plot2.png

_images/scatter_plot.png
sa211d asnoy uelpap

Percent lower status in the population

_images/tornado1.png
Tornado plot

£
H
H

2460000 2480000 2500000 2520000 2540000 2560000

_images/cursor_tool_demo.png
ors

s

0zs

oz

0

s

0 s s 25 o 25 s 75 W + 2 o 2 4

Cursorlpos: (0.019569471624265589, 0.0195682225802| Cursor2pos: |(0.95959595959595934, 1.46464646464646:

_images/data_cube.png
Cube analyzer

_images/container_nospace.png

_images/cmap_scatter.png
Colormapped scatter plot

My First Colormapped Scatter Plot

_images/line_drawing.png
Simple scatter plot

Scatter Plot

_images/regression.png
Regression Selection

1.25x-0.10]

s

_images/contour_cmap_plot.png

_images/scatter_inspector.png
Tooltip demo

Scatter Inspector Demo

_images/cmap_image_select.png
Colormapped Image Plot

Selectable Image Plot

_images/gridcontainer.png
Grid Container with Fixed Aspect ratio

5250 25 5 751012515

_images/data_stream.png
Edit properties

Pt Eaor

a0

a0

e =0 az20
Tme.

Plot type: (=) Line () Scatter

_images/lines_final.png
Chaco Plot

simple line plots

_images/chaco_show.png
P |

-F Uy
I

R i RTIT

_images/connected_windows_example.png
Orientation: _horizontal

[]

806 Chaco Plot
Orientation: | vertical

_images/simple_line2.png
Simple line plot

Bessel functions

O Bessel]
— Bessel|
O Bessel]
— Bessel |
O Bessel]
— Bessel|
O Bessel]

Bessel]
O Bessel]
— Bessel |

_images/scalar_function1.png
Edit properties

075050250 02505075

_images/simple_line.png
Simple line plot

Bessel functions

O Bessel]

Bessel]
O Bessel]

Bessel]
O Bessel]
— Bessel|
O Bessel]

Bessel]
O Bessel]
— Bessel |

_static/down.png

_images/financial_plot_dates.png
Financial plot example

Financial Plot with Date Axis

Jangs. Janio

_images/zoomed_plot.png
[Users/chris/Documents /enthought/ETS_3.0.1/Chaco_3.0.1/examples/data/sample.wav

008 008
Time (s)

008
Time (s)

_images/4d_scatter_plot.png
Median house prices

w
o

N
o

=
o

10 15 20 25 30
Percent lower status in the population

_images/line_hold_plot.png
Te]
(o]

<
o~

m
o~

N —l
(o] (o]

9214d 3003

Days

_images/tutorial_hyetograph_nodata.png

_images/quiver_plot.png
-0.75-0.5-0.25 0 0.25 0.5 0.75
X

_images/scatter1.png
Chaco Plot

user_manual/chaco_tutorial.html

 Navigation

 		chaco 4.3.0 documentation »

Interactive plotting with Chaco

Overview

This tutorial is an introduction to Chaco. We’re going to build several
mini-applications of increasing capability and complexity. Chaco was designed to
be used primarily by scientific programmers, and this tutorial requires only
basic familiarity with Python.

Knowledge of NumPy can be helpful for certain parts of the tutorial. Knowledge
of GUI programming concepts such as widgets, windows, and events are helpful
for the last portion of the tutorial, but it is not required.

This tutorial demonstrates using Chaco with Traits UI, so knowledge of the
Traits framework is also helpful. We don’t use very many sophisticated aspects
of Traits or Traits UI, and it is entirely possible to pick it up as you go
through the tutorial. This tutorial applies to Enthought Tool Suite
version 3.x.

It’s also worth pointing out that you don’t have to use Traits UI in order to
use Chaco — you can integrate Chaco directly with Qt or wxPython — but for
this tutorial, we use Traits UI to make things easier.

Goals

By the end of this tutorial, you will have learned how to:

		create plots of various types

		arrange plots in various layouts

		configure and dynamically modify your plots using Traits UI

		interact with plots using tools

		create custom, stateful tools that interact with mouse and keyboard

Introduction

Chaco is a plotting application toolkit. This means that it can build
both static plots and dynamic data visualizations that let you
interactively explore your data. Here are four basic examples of Chaco plots:

[image: ../_images/tornado1.png]
This plot shows a static “tornado plot” with a categorical Y axis and continuous
X axis. The plot is resizable, but the user cannot interact or explore the data
in any way.

[image: ../_images/simple_line2.png]
This is an overlaid composition of line and scatter plots with a legend. Unlike
the previous plot, the user can pan and zoom this plot, exploring the
relationship between data curves in areas that appear densely overlapping.
Furthermore, the user can move the legend to an arbitrary position on the plot,
and as they resize the plot, the legend maintains the same screen-space
separation relative to its closest corner.

[image: ../_images/regression1.png]
This example starts to demonstrate interacting with the data set in an
exploratory way. Whereas interactivity in the previous example was limited to
basic pan and zoom (which are fairly common in most plotting libraries), this is
an example of a more advanced interaction that allows a level of data
exploration beyond the standard view manipulations.

With this example, the user can select a region of data space, and a simple
line fit is applied to the selected points. The equation of the line is
then displayed in a text label.

The lasso selection tool and regression overlay are both built in to Chaco,
but they serve an additional purpose of demonstrating how one can build complex
data-centric interactions and displays on top of the Chaco framework.

[image: ../_images/scalar_function1.png]
This is a much more complex demonstration of Chaco’s capabilities. The user
can view the cross sections of a 2-D scalar-valued function. The cross sections
update in real time as the user moves the mouse, and the “bubble” on each line
plot represents the location of the cursor along that dimension. By using
drop-down menus (not show here), the user can change plot attributes like the
colormap and the number of contour levels used in the center plot, as well as
the actual function being plotted.

Script-oriented plotting

We distinguish between “static” plots and “interactive visualizations”
because these different applications of a library affect the structure
of how the library is written, as well as the code you write to use the
library.

Here is a simple example of the “script-oriented” approach for creating
a static plot. This is probably familiar to anyone who has used Gnuplot,
MATLAB, or Matplotlib:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10

		import numpy as np
from chaco.shell import *

x = np.linspace(-2*pi, 2*pi, 100)
y = np.sin(x)

plot(x, y, "r-")
title("First plot")
ytitle("sin(x)")
show()

This creates this plot:

[image: ../_images/script_oriented.png]
The basic structure of this example is that we generate some data, then we call
functions to plot the data and configure the plot. There is a global concept of
“the active plot”, and the functions do high-level manipulations on it. The
generated plot is then usually saved to disk for inclusion in a journal article
or presentation slides.

Now, as it so happens, this particular example uses the chaco.shell
script plotting package, so when you run this script, the plot that Chaco opens
does have some basic interactivity. You can pan and zoom, and even move forwards
and backwards through your zoom history. But ultimately it’s a pretty static
view into the data.

Application-oriented plotting

The second approach to plotting can be thought of as “application-oriented”, for
lack of a better term. There is definitely a bit more code, and the plot
initially doesn’t look much different, but it sets us up to do more interesting
things, as you will see later on:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

		from traits.api import HasTraits, Instance
from traitsui.api import View, Item
from chaco.api import Plot, ArrayPlotData
from enable.component_editor import ComponentEditor
from numpy import linspace, sin

class LinePlot(HasTraits):
 plot = Instance(Plot)

 traits_view = View(
 Item('plot',editor=ComponentEditor(), show_label=False),
 width=500, height=500, resizable=True, title="Chaco Plot")

 def __init__(self):
 super(LinePlot, self).__init__()

 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x=x, y=y)

 plot = Plot(plotdata)
 plot.plot(("x", "y"), type="line", color="blue")
 plot.title = "sin(x) * x^3"

 self.plot = plot

if __name__ == "__main__":
 LinePlot().configure_traits()

This produces a plot similar to the previous script-oriented code snippet:

[image: ../_images/first_plot.png]
So, this is our first “real” Chaco plot. We will walk through this code and
look at what each bit does. This example serves as the basis for many of the
later examples.

Application-oriented plotting, step by step

Let’s start with the basics. First, we declare a class to represent our
plot, called LinePlot:

class LinePlot(HasTraits):
 plot = Instance(Plot)

This class uses the Enthought Traits package, and all of our objects subclass
from HasTraits.

Next, we declare a Traits UI View for this class:

traits_view = View(
 Item('plot',editor=ComponentEditor(), show_label=False),
 width=500, height=500, resizable=True, title="Chaco Plot")

Inside this view, we are placing a reference to the plot trait and
telling Traits UI to use the ComponentEditor (imported from
enable.component_editor) to display it. If the
trait were an Int or Str or Float, Traits could automatically pick an
appropriate GUI element to display it. Since Traits UI doesn’t natively know
how to display Chaco components, we explicitly tell it what kind of editor to
use.

The other parameters in the View constructor are pretty
self-explanatory, and the
Traits UI User’s Guide [http://code.enthought.com/projects/traits/docs/html/TUIUG/index.html]
documents all the various properties
you can set here. For our purposes, this Traits View is sort of boilerplate. It
gets us a nice little window that we can resize. We’ll be using something like
this View in most of the examples in the rest of the tutorial.

Now, let’s look at the constructor, where the real work gets done:

def __init__(self):
 super(LinePlot, self).__init__()
 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x=x, y=y)

The first thing we do here is call the super-class’s __init__() method,
which ensures that all the Traits machinery is properly set up, even though the
__init__() method is overridden. Then we create some mock data, just like
in the script-oriented approach. But rather than directly calling some sort of
plotting function to throw up a plot, we create this ArrayPlotData
object and stick the data in there. The ArrayPlotData object is a simple
structure that associates a name with a NumPy array.

In a script-oriented approach to plotting, whenever you have to update the data
or tweak any part of the plot, you basically re-run the entire script. Chaco’s
model is based on having objects representing each of the little pieces of a
plot, and they all use Traits events to notify one another that some attribute
has changed. So, the ArrayPlotData is an object that interfaces your
data with the rest of the objects in the plot. In a later example we’ll see
how we can use the ArrayPlotData to quickly swap data items in and
out, without affecting the rest of the plot.

The next line creates an actual Plot object, and gives it the
ArrayPlotData instance we created previously:

plot = Plot(plotdata)

Chaco’s Plot object serves two roles: it is both a container of
renderers, which are the objects that do the actual task of transforming data
into lines and markers and colors on the screen, and it is a factory for
instantiating renderers. Once you get more familiar with Chaco, you can choose
to not use the Plot object, and instead directly create renderers and containers
manually. Nonetheless, the Plot object does a lot of nice housekeeping that is
useful in a large majority of use cases.

Next, we call the plot() method on the Plot object we just created:

plot.plot(("x", "y"), type="line", color="blue")

This creates a blue line plot of the data items named “x” and “y”. Note that
we are not passing in an actual array here; we are passing in the names of arrays
in the ArrayPlotData we created previously.

This method call creates a new renderer — in this case a line renderer — and
adds it to the Plot.

This may seem kind of redundant or roundabout to folks who are used to passing
in a pile of NumPy arrays to a plot function, but consider this:
ArrayPlotData objects can be shared between multiple Plots. If you
want several different plots of the same data, you don’t have to externally
keep track of which plots are holding on to identical copies of what data, and
then remember to shove in new data into every single one of those plots. The
ArrayPlotData object acts almost like a symlink between consumers of data and
the actual data itself.

Next, we set a title on the plot:

plot.title = "sin(x) * x^3"

And then we set our plot trait to the new plot:

self.plot = plot

The last thing we do in this script is set up some code to run when the script
is executed:

if __name__ == "__main__":
 LinePlot().configure_traits()

This one-liner instantiates a LinePlot object and calls its
configure_traits() method. This brings up a dialog with a traits editor for
the object, built up according to the View we created earlier. In our
case, the editor just displays our plot attribute using the
ComponentEditor.

Scatter plots

We can use the same pattern to build a scatter plot:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

		from traits.api import HasTraits, Instance
from traitsui.api import View, Item
from chaco.api import Plot, ArrayPlotData
from enable.component_editor import ComponentEditor
from numpy import linspace, sin

class ScatterPlot(HasTraits):
 plot = Instance(Plot)

 traits_view = View(
 Item('plot',editor=ComponentEditor(), show_label=False),
 width=500, height=500, resizable=True, title="Chaco Plot")

 def __init__(self):
 super(ScatterPlot, self).__init__()

 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x = x, y = y)

 plot = Plot(plotdata)
 plot.plot(("x", "y"), type="scatter", color="blue")
 plot.title = "sin(x) * x^3"

 self.plot = plot

if __name__ == "__main__":
 ScatterPlot().configure_traits()

Note that we have only changed the type argument to the plot.plot() call
and the name of the class from LinePlot to ScatterPlot. This
produces the following:

[image: ../_images/scatter1.png]

Image plots

Image plots can be created in a similar fashion:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

		from traits.api import HasTraits, Instance
from traitsui.api import View, Item
from chaco.api import Plot, ArrayPlotData, jet
from enable.component_editor import ComponentEditor
from numpy import exp, linspace, meshgrid

class ImagePlot(HasTraits):
 plot = Instance(Plot)

 traits_view = View(
 Item('plot', editor=ComponentEditor(), show_label=False),
 width=500, height=500, resizable=True, title="Chaco Plot")

 def __init__(self):
 super(ImagePlot, self).__init__()

 x = linspace(0, 10, 50)
 y = linspace(0, 5, 50)
 xgrid, ygrid = meshgrid(x, y)
 z = exp(-(xgrid*xgrid+ygrid*ygrid)/100)
 plotdata = ArrayPlotData(imagedata = z)

 plot = Plot(plotdata)
 plot.img_plot("imagedata", colormap=jet)

 self.plot = plot

if __name__ == "__main__":
 ImagePlot().configure_traits()

There are a few more steps to create the input Z data, and we also call a
different method on the Plot object — img_plot() instead of
plot(). The details of the method parameters are not that important
right now; this is just to demonstrate how we can apply the same basic pattern
from the “first plot” example above to do other kinds of plots.

[image: ../_images/image_plot1.png]

Multiple plots

Earlier we said that the Plot object is both a container of renderers and a
factory (or generator) of renderers. This modification of the previous example
illustrates this point. We only create a single instance of Plot, but we call
its plot() method twice. Each call creates a new renderer and adds it to
the Plot object’s list of renderers. Also notice that we are reusing the x
array from the ArrayPlotData:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

		from traits.api import HasTraits, Instance
from traitsui.api import View, Item
from chaco.api import Plot, ArrayPlotData
from enable.component_editor import ComponentEditor
from numpy import cos, linspace, sin

class OverlappingPlot(HasTraits):

 plot = Instance(Plot)

 traits_view = View(
 Item('plot',editor=ComponentEditor(), show_label=False),
 width=500, height=500, resizable=True, title="Chaco Plot")

 def __init__(self):
 super(OverlappingPlot, self).__init__()

 x = linspace(-14, 14, 100)
 y = x/2 * sin(x)
 y2 = cos(x)
 plotdata = ArrayPlotData(x=x, y=y, y2=y2)

 plot = Plot(plotdata)
 plot.plot(("x", "y"), type="scatter", color="blue")
 plot.plot(("x", "y2"), type="line", color="red")

 self.plot = plot

if __name__ == "__main__":
 OverlappingPlot().configure_traits()

This code generates the following plot:

[image: ../_images/overlapping_plot.png]

Containers

So far we’ve only seen single plots, but frequently we need to plot data side
by side. Chaco uses various subclasses of Container to do layout.
Horizontal containers (HPlotContainer) place components horizontally:

[image: ../_images/hplotcontainer.png]
Vertical containers (VPlotContainer) array component vertically:

[image: ../_images/vplotcontainer.png]
Grid container (GridPlotContainer) lays plots out in a grid:

[image: ../_images/gridcontainer.png]
Overlay containers (OverlayPlotContainer) just overlay plots on top of
each other:

[image: ../_images/simple_line2.png]
You’ve actually already seen OverlayPlotContainer — the Plot
class is actually a special subclass of OverlayPlotContainer. All of
the plots inside this container appear to share the same X- and Y-axis, but this
is not a requirement of the container. For instance, the following plot shows
plots sharing only the X-axis:

[image: ../_images/multiyaxis.png]

Using a container

Containers can have any Chaco component added to them. The following code
creates a separate Plot instance for the scatter plot and the line
plot, and adds them both to the HPlotContainer object:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

		from traits.api import HasTraits, Instance
from traitsui.api import View, Item
from chaco.api import HPlotContainer, ArrayPlotData, Plot
from enable.component_editor import ComponentEditor
from numpy import linspace, sin

class ContainerExample(HasTraits):

 plot = Instance(HPlotContainer)

 traits_view = View(Item('plot', editor=ComponentEditor(), show_label=False),
 width=1000, height=600, resizable=True, title="Chaco Plot")

 def __init__(self):
 super(ContainerExample, self).__init__()

 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x=x, y=y)

 scatter = Plot(plotdata)
 scatter.plot(("x", "y"), type="scatter", color="blue")

 line = Plot(plotdata)
 line.plot(("x", "y"), type="line", color="blue")

 container = HPlotContainer(scatter, line)
 self.plot = container

if __name__ == "__main__":
 ContainerExample().configure_traits()

This produces the following plot:

[image: ../_images/container_example.png]
There are many parameters you can configure on a container, like background
color, border thickness, spacing, and padding. We insert some more
lines between lines 20 and 21 of the previous example to make the two plots
touch in the middle:

container = HPlotContainer(scatter, line)
container.spacing = 0

scatter.padding_right = 0

line.padding_left = 0
line.y_axis.orientation = "right"

self.plot = container

Something to note here is that all Chaco components have both bounds and
padding (or margin). In order to make our plots touch, we need to zero out the
padding on the appropriate side of each plot. We also move the Y-axis for the
line plot (which is on the right hand side) to the right side.

This produces the following:

[image: ../_images/container_nospace.png]

Dynamically changing plots

So far, the stuff you’ve seen is pretty standard: building up a plot of some
sort and doing some layout on them. Now we start taking advantage
of the underlying framework.

Chaco is written using Traits. This means that all the graphical bits you
see — and many of the bits you don’t see — are all objects with various
traits, generating events, and capable of responding to events.

We’re going to modify our previous ScatterPlot example to demonstrate some
of these capabilities. Here is the full listing of the modified code:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

		from traits.api import HasTraits, Instance, Int
from traitsui.api import View, Group, Item
from enable.api import ColorTrait
from enable.component_editor import ComponentEditor
from chaco.api import marker_trait, Plot, ArrayPlotData
from numpy import linspace, sin

class ScatterPlotTraits(HasTraits):

 plot = Instance(Plot)
 color = ColorTrait("blue")
 marker = marker_trait
 marker_size = Int(4)

 traits_view = View(
 Group(Item('color', label="Color", style="custom"),
 Item('marker', label="Marker"),
 Item('marker_size', label="Size"),
 Item('plot', editor=ComponentEditor(), show_label=False),
 orientation = "vertical"),
 width=800, height=600, resizable=True, title="Chaco Plot")

 def __init__(self):
 super(ScatterPlotTraits, self).__init__()

 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x = x, y = y)

 plot = Plot(plotdata)

 self.renderer = plot.plot(("x", "y"), type="scatter", color="blue")[0]
 self.plot = plot

 def _color_changed(self):
 self.renderer.color = self.color

 def _marker_changed(self):
 self.renderer.marker = self.marker

 def _marker_size_changed(self):
 self.renderer.marker_size = self.marker_size

if __name__ == "__main__":
 ScatterPlotTraits().configure_traits()

Let’s step through the changes.

First, we add traits for color, marker type, and marker size:

class ScatterPlotTraits(HasTraits):
 plot = Instance(Plot)
 color = ColorTrait("blue")
 marker = marker_trait
 marker_size = Int(4)

We also change our Traits UI View to include references to these
new traits. We put them in a Traits UI Group so that we can control
the layout in the dialog a little better — here, we’re setting the layout
orientation of the elements in the dialog to “vertical”.

traits_view = View(
 Group(
 Item('color', label="Color", style="custom"),
 Item('marker', label="Marker"),
 Item('marker_size', label="Size"),
 Item('plot', editor=ComponentEditor(), show_label=False),
 orientation = "vertical"),
 width=500, height=500, resizable=True,
 title="Chaco Plot")

Now we have to do something with those traits. We modify the
constructor so that we grab a handle to the renderer that is created by
the call to plot():

self.renderer = plot.plot(("x", "y"), type="scatter", color="blue")[0]

Recall that a Plot is a container for renderers and a factory for them. When
called, its plot() method returns a list of the renderers that the call
created. In previous examples we’ve been just ignoring or discarding the return
value, since we had no use for it. In this case, however, we grab a
reference to that renderer so that we can modify its attributes in later
methods.

The plot() method returns a list of renderers because for some values
of the type argument, it will create multiple renderers. In our case here,
we are just doing a scatter plot, and this creates just a single renderer.

Next, we define some Traits event handlers. These are specially-named
methods that are called whenever the value of a particular trait changes. Here
is the handler for color trait:

def _color_changed(self):
 self.renderer.color = self.color

This event handler is called whenever the value of self.color changes,
whether due to user interaction with a GUI, or due to code elsewhere. (The
Traits framework automatically calls this method because its name follows the
name template of _traitname_changed.) Since this method is called
after the new value has already been updated, we can read out the new value just
by accessing self.color. We just copy the color to the scatter renderer.
You can see why we needed to hold on to the renderer in the constructor.

Now we do the same thing for the marker type and marker size traits:

def _marker_changed(self):
 self.renderer.marker = self.marker

def _marker_size_changed(self):
 self.renderer.marker_size = self.marker_size

Running the code produces an app that looks like this:

[image: ../_images/traits.png]
Depending on your platform, the color editor/swatch at the top may look different.
This is how it looks on Mac OS X. All of the controls here are “live”. If you
modify them, the plot updates.

Dynamically changing plot content

Traits are not just useful for tweaking visual features. For instance, you can
use them to select among several data items. This next example is based on
the earlier LinePlot example, and we’ll walk through the modifications:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

		from scipy.special import jn

class DataChooser(HasTraits):

 plot = Instance(Plot)

 data_name = Enum("jn0", "jn1", "jn2")

 traits_view = View(
 Item('data_name', label="Y data"),
 Item('plot', editor=ComponentEditor(), show_label=False),
 width=800, height=600, resizable=True,
 title="Data Chooser")

 def __init__(self):
 x = linspace(-5, 10, 100)

 # jn is the Bessel function
 self.data = {"jn0": jn(0, x),
 "jn1": jn(1, x),
 "jn2": jn(2, x)}

 self.plotdata = ArrayPlotData(x = x, y = self.data["jn0"])

 plot = Plot(self.plotdata)
 plot.plot(("x", "y"), type="line", color="blue")
 self.plot = plot

 def _data_name_changed(self):
 self.plotdata.set_data("y", self.data[self.data_name])

First, we add an Enumeration trait to select a particular data name

data_name = Enum("jn0", "jn1", "jn2")

and a corresponding Item in the Traits UI View

Item('data_name', label="Y data")

By default, an Enum trait will be displayed as a drop-down. In the
constructor, we create a dictionary that maps the data names to actual
numpy arrays:

jn is the Bessel function
self.data = {“jn0”: jn(0, x),
 “jn1”: jn(1, x),
 “jn2”: jn(2, x)}

When we initialize the ArrayPlotData, we’ll set y to the jn0 array.

self.plotdata = ArrayPlotData(x = x, y = self.data[“jn0”])
plot = Plot(self.plotdata)

Note that we are storing a reference to the plotdata object.
In previous examples, there was no need to keep a reference around (except
for the one stored inside the Plot object).

Finally, we create an event handler for the “data_name” Trait. Any time the
data_name trait changes, we’re going to look it up in the self.data
dictionary, and push that value into the y data item in ArrayPlotData.

def _data_name_changed(self):
 self.plotdata.set_data("y", self.data[self.data_name])

Note that there is no actual copying of data here, we’re just passing around
numpy references.

The final plot looks like this:

[image: ../_images/data_chooser_example.png]

Connected plots

One of the features of Chaco’s architecture is that all the underlying
components of a plot are live objects, connected via events.
In the next set of examples, we’ll look at how to hook some of those up.

First, we are going to make two separate plots look at the same data
space region. This is the full code:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

		class ConnectedRange(HasTraits):

 container = Instance(HPlotContainer)

 traits_view = View(Item('container', editor=ComponentEditor(),
 show_label=False),
 width=1000, height=600, resizable=True,
 title="Connected Range")

 def __init__(self):
 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x = x, y = y)

 scatter = Plot(plotdata)
 scatter.plot(("x", "y"), type="scatter", color="blue")

 line = Plot(plotdata)
 line.plot(("x", "y"), type="line", color="blue")

 self.container = HPlotContainer(scatter, line)

 scatter.tools.append(PanTool(scatter))
 scatter.tools.append(ZoomTool(scatter))

 line.tools.append(PanTool(line))
 line.tools.append(ZoomTool(line))

 scatter.range2d = line.range2d

First, we define a “horizontal” container that displays the plots side
to side:

container = Instance(HPlotContainer)

traits_view = View(Item('container', editor=ComponentEditor(),
 show_label=False),
 width=1000, height=600, resizable=True,
 title="Connected Range")

In the constructor, we define some data and create two plots of it,
a line plot and a scatter plot, insert them in the container, and add
pan and zoom tools to both.

The most important part of the code is the last line of the constructor:

scatter.range2d = line.range2d

Chaco has a concept of data range to express bounds in data space.
There are a series of objects representing this concept.
The standard 2D plots that we have considered so far all
have a two-dimensional range on them.

In this line, we are replacing the range on the scatter plot
with the range from the line plot. The two plots now share the same
range object, and will change together in response to
changes to the data space bounds. For example, panning
or zooming one of the plots
will result in the same transformation in the other:

[image: ../_images/connected_range_example.png]

Plot orientation, index and value

We can modify the connected plots example
such that the two plots only share one of the axes. The 2D data range
trait is actually composed of two 1D data ranges, and we can access them
independently. So to link up the x-axes we can substitute the line

scatter.range2d = line.range2d

with

scatter.index_range = line.index_range

Now the plot can move independently on the y-axis and are link on the x-axis.

You may have notices that we referred to the x-axis range as index range.
The terms index and value are quite common in Chaco:
As it is possible to easily change the orientation of most Chaco plots,
we want some way to differentiate between the abscissa and the ordinate axes.
If we just stuck with x and y, things would get pretty confusing after
a change in orientation, as one would now, for instance, change the y-axis
by referring to it as x_range.

Instead, in Chaco we refer to the data domain as index, and to the co-domain
(the set of possible values) as value.

To illustrate how flexible this concept is, we can switch the orientation
of the line plot by substituting

line = Plot(plotdata)

with

line = Plot(plotdata, orientation="v", default_origin="top left")

The default_origin parameter sets the index axis to be increasing
downwards. As a result of these changes, now changes to the
scatter plot index axis (the x axis) produces equivalent changes in the
line plot index axis (the y axis):

[image: ../_images/connected_index_example.png]

Multiple windows

Chaco components can also be connected beyond the boundary of a single window.
We will again modify the LinePlot example. This
time, we will create a scatter plot and a line plot with connected ranges
in different windows.

First of all, we define a Traits UI view of a customizable plot.
This is the full code that we will analyze step by step below

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

		class PlotEditor(HasTraits):

 plot = Instance(Plot)

 plot_type = Enum("scatter", "line")

 orientation = Enum("horizontal", "vertical")

 traits_view = View(Item('orientation', label="Orientation"),
 Item('plot', editor=ComponentEditor(),
 show_label=False),
 width=500, height=500, resizable=True,
 title="Chaco Plot")

 def __init__(self, *args, **kw):
 super(PlotEditor, self).__init__(*args, **kw)

 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x = x, y = y)

 plot = Plot(plotdata)
 plot.plot(("x", "y"), type=self.plot_type, color="blue")

 plot.tools.append(PanTool(plot))
 plot.tools.append(ZoomTool(plot))

 self.plot = plot

 def _orientation_changed(self):
 if self.orientation == "vertical":
 self.plot.orientation = "v"
 else:
 self.plot.orientation = "h"

The plot defines two traits, one for the plot type (scatter of line plot)

plot_type = Enum("scatter", "line")

and one for the orientation of the plot

orientation = Enum("horizontal", "vertical")

The plot_type trait will not be exposed in the UI, but we add a
Traits UI item for the orientation:

traits_view = View(Item('orientation', label="Orientation"), ...)

Since the orientation trait is an Enum, this will appear as a drop-down
box in the window.

The constructor is very similar to the one used in the previous examples,
except that we create a new plot of the type specified in the plot_type
trait:

plot.plot(("x", "y"), type=self.plot_type, color="blue")

Finally, we wrote a Trait event handler for the orientation trait,
which changes the orientation of the plot as required:

def _orientation_changed(self):
 if self.orientation == "vertical":
 self.plot.orientation = "v"
 else:
 self.plot.orientation = "h"

The PlotEditor represents one window. When running the application,
we can easily create two separate windows, and connect their axes in
this way:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

		if __name__ == "__main__":

 # create two plots, one of type "scatter", one of type "line"
 scatter = PlotEditor(plot_type = "scatter")
 line = PlotEditor(plot_type = "line")

 # connect the axes of the two plots
 scatter.plot.range2d = line.plot.range2d

 # open two windows
 line.edit_traits()
 scatter.configure_traits()

In the last two lines, we open Traits UI editors on both objects.
Note that we call edit_traits() on the first object,
and configure_traits() on the second object.
The technical reason for this is that configure_traits()
will start the wxPython main loop (thereby blocking the script until the
window is closed), whereas edit_traits() will not. Thus, when
opening multiple windows, we would call edit_traits()
on all but the last one.

Here is a screenshot of the two windows in action:

[image: ../_images/connected_windows_example.png]

Plot tools: adding interactions

An important feature of Chaco is that it is possible to write re-usable
tools to interact directly with the plots.

Chaco takes a modular approach to interactivity. Instead of begin hard-coded
into specific plot types or plot renderers,
the interaction logic is factored out into classes we call tools.
An advantage of this approach is that we can add new plot types
and container types and still use the old interactions, as long as we
adhere to certain basic interfaces.

Thus far, none of the example plots we’ve built are truly interactive,
e.g., you cannot pan or zoom them. In the next example, we will modify
the LinePlot example so that we can pan and zoom.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

		from chaco.tools.api import PanTool, ZoomTool, DragZoom

class ToolsExample(HasTraits):

 plot = Instance(Plot)

 traits_view = View(
 Item('plot',editor=ComponentEditor(), show_label=False),
 width=500, height=500,
 resizable=True,
 title="Chaco Plot")

 def __init__(self):
 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x = x, y = y)
 plot = Plot(plotdata)
 plot.plot(("x", "y"), type="line", color="blue")

 # append tools to pan, zoom, and drag
 plot.tools.append(PanTool(plot))
 plot.tools.append(ZoomTool(plot))
 plot.tools.append(DragZoom(plot, drag_button="right"))

 self.plot = plot

The example illustrates the general usage pattern: we create a new instance of
a Tool, giving it a reference
to the Plot, and then we append that tool to a list of tools on the plot.
This looks a little redundant, but there is a reason why the tools
need a reference back to the plot: the tools use methods and attributes
of the plot
to transform and interpret the events that it receives, as well as act
on those events. Most tools will also modify the attributes on the plot.
The pan and zoom tools, for instance, modify the data ranges on the
component handed in to it.

Dynamically controlling interactions

One of the nice things about having interactivity bundled up into modular
tools is that one can dynamically control when the interaction are allowed
and when they are not.

We will modify the previous example so that we can externally control
what interactions are available on a plot.

First, we add a new trait to hold a list of names of the tools.
This is similar to adding a list of data items
in the DataChooser example.
However, instead of a drop-down (which is the default editor
for an Enumeration trait), we tell Traits that we would like a
check list by creating a CheckListEditor, so that we will be able
to select multiple tools. We give the CheckListEditor a list of possible
values, which are just the names of the tools. Notice that these are
strings, and not the tool classes themselves.

		1
2
3
4
5
6
7
8

		from enthought.traits.ui.api import CheckListEditor

class ToolsExample(HasTraits):

 plot = Instance(Plot)

 tools = List(editor=CheckListEditor(values = ["PanTool",
 "SimpleZoom", "DragZoom"]))

In the constructor, we do not add the interactive tools:

		1
2
3
4
5
6
7

		 def __init__(self):
 x = linspace(-14, 14, 100)
 y = sin(x) * x**3
 plotdata = ArrayPlotData(x = x, y = y)
 plot = Plot(plotdata)
 plot.plot(("x", "y"), type="line", color="blue")
 self.plot = plot

Instead, we write a trait event handler for the tools trait:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

		 def _tools_changed(self):
 classes = [eval(class_name) for class_name in self.tools]

 # Remove all tools from the plot
 plot_tools = self.plot.tools
 for tool in plot_tools:
 plot_tools.remove(tool)

 # Create new instances for the selected tool classes
 for cls in classes:
 self.plot.tools.append(cls(self.plot))

The first line,

classes = [eval(class_name) for class_name in self.tools]

converts the value of the tools trait (a string) to a Tool class. In the
of the method, we remove all the existing tools from the plot

Remove all tools from the plot
plot_tools = self.plot.tools
for tool in plot_tools:
 plot_tools.remove(tool)

and create new ones for the selected items:

Create new instances for the selected tool classes
for cls in classes:
 self.plot.tools.append(cls(self.plot))

Here is a screenshot of the final result:

[image: ../_images/tool_chooser_example.png]

Writing a custom tool

It is easy to extend and customize the Chaco framework:
the main Chaco components define clear interfaces, so one can write a
custom plot or tool, plug it in, and it will play well with the existing
pieces.

Our next step is to write a simple, custom tool that will
print out the position on the plot under the mouse cursor.
This can be done in just a few lines:

from enable.api import BaseTool

class CustomTool(BaseTool):
 def normal_mouse_move(self, event):
 print "Screen point:", event.x, event.y

BaseTool is an abstract class that forms the interface for tools.
It defines a set of methods that are called for the
most common mouse and keyboard events. In this case, we define a callback
for the mouse_move event. The prefix normal indicated the
state of the tool, which we will cover next.

All events have an x and a y position, and our custom tools is
just going to print it out.

[image: ../_images/custom_tool_example.png]
Other event callbacks correspond to mouse gestures (mouse_enter,
mouse_leave, mouse_wheel), mouse clicks (left_down, left_up,
right_down, right_up), and key presses (key_pressed).

Stateful tools

Chaco tools are stateful. You can think of them as state machines that
toggle states based on the events they receive. All tools have at least
one state, called “normal”. That is why the callback in the previous
example began with the prefix normal_.

Our next tool is going to have two states, “normal” and “mousedown”.
We are going to enter the “mousedown” state when we detect a “left down”
event, and we will exit that state when we detect a “left up” event:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

		class CustomTool(BaseTool):

 event_state = Enum("normal", "mousedown")

 def normal_mouse_move(self, event):
 print "Screen:", event.x, event.y

 def normal_left_down(self, event):
 self.event_state = "mousedown"
 event.handled = True

 def mousedown_left_up(self, event):
 self.event_state = "normal"
 event.handled = True

Every event has a handled boolean attribute that can be set to announce
that it has been taken care of. Handled events are not propagated further.

So far, the custom tool would stop printing to screen while the left mouse
button is pressed. This is because while the tools is in the “mousedown” state,
a mouse move event looks for a mousedown_mouse_move callback method.
We can write an implementation for it that maps the screen coordinates in
data space:

def mousedown_mouse_move(self, event):
 print "Data:", self.component.map_data((event.x, event.y))

The self.component attribute contains a reference to the underlying
plot. This is why tools need to be given a reference to a plot when
they are constructed: almost all tools need to use some capabilities
(like map_data) of the components for which they are receiving events.

[image: ../_images/custom_tool_stateful_example.png]

Final words

This concludes this tutorial. For further information, please refer
to the Other Chaco resources page, or visit the User guide.

This tutorial is based on the “Interactive plotting with Chaco” tutorial
that was presented by Peter Wang at Scipy 2008

 © Copyright 2008-2011, Enthought, Inc..
 Last updated on Oct 14, 2013.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

 		4.3.0

_images/grid_container1.png
806 Edit properties

5 04 04

0z

3 o 0z
5 25 0 25 5 75 W 125 15 <

04 o

25 0 25 5 75 W0 125 15

0z

25 0 25 5 75 1 125

01

: . w
&£~ ~ ¢ :

5 25 0 25 5 75 W 125 15 o 01
o1

0z o

25 0 25 5 75 W0 125 15 o1

0z

25 0 25 5 75 W 125 15

_images/overlapping_plot.png
s
g
2
S

_images/spectrum.png
000 Audio Spectrum
Spectrum Time Spectrogram
s 0z
01
4
o
005
3
s 2
2 2
= g 0
g g
2]
2
s
)
'
15
o 0z
0 0 00 0 000 5000 0 o oms oo oo
Frequency (hz) Time (seconds)

_images/multiaxis.png
Multi-Y plot

Bessel functions

Bessel |0
— Bessel 1

Bessel| 2
—— Bessel |3

_images/polar_plot.png
é
i

_images/scalar_image_function_inspector.png

_images/line_plot_hold.png
Line plots with hold

render_style = hold render_style = connectedhold

_images/grid_container_aspect_ratio.png
Grid Container with Fixed Aspect ratio

75 10 125 18 5250255790235

-

525 0 25 5 75 1012515 5250 255 751012515

5250 25 5 75 10125 15

_images/vsize_scatter_plot.png
Median house prices

10 15 20 25 30
Percent lower status in the population

_images/image_inspector.png
Inspecting a Colormapped Image Plot

My First Image Plot

(400, 174)
(179, 255, 66)
0.663334944505

_images/contour_poly_plot.png
-2.5

X o

2.5

_images/vanderwaals.png
Van der waal Equation

Totvolume:
Temperature
Pt type:

500

oor

500 -37.58

1000 773222

~s00°
8314472
ine

500404

|

_images/bigdata.png
08

B 25 o 25 s s 10 125 1

_images/bar_plot.png
e '] n

Categories

_static/comment-bright.png

_images/multiyaxis.png
Bessel |0
— Bessel 1

Bessel| 2
—— Bessel | 3

_images/custom_tool_example.png
Screen:

Scree
Scree
Scree

Screen:

Scree
Scree
Scree
Scree
Scree
Scree

Screen:

Scree
Scree
Scree

Screen:

Scree
Scree
Scree
Scree
Scree
Scree

Screen:

scipy2008

283.0
236.0
184.0
136.0
92.0
56.0
26.0
7.0
43.0
56.0
76.0
112
158
215
278
333
379
394,
362
315
254,
171
87.0

Python

Custom Tool

_images/hplotcontainer.png
Horizontal container

More Bessels

_images/candle_plot.png
2.5

15

0.5

Items

_images/image_plot.png
Simple image plot

_images/line_plot1.png
Basic x-y plots

Line Plot Scatter plot

_images/line_plot.png
Te]
(o]

<
o~

m
o~

N —l
(o] (o]

9214d 3003

o
o~

[0)]
—

60

50

40

30

20

10

Days

_images/inset_plot.png
Inset plots

Inset Plot

_images/image_plot1.png
Chaco Plot

_images/polygon_move.png
Polygon Plot

Polygon Plot

_images/polygon_plot.png
Basic Polygon Plot

My First Polygon Plot

_static/plus.png

_images/vertical_plot.png
More Bessels

s
a
el
!
2

_images/custom_tool_stateful_example.png
Custom Tool

scipy2008 — Python — 41x22

6.37696335 -1509. 55868425
6.37696335 -1536.92209019]
6.45026178 -1550.60514317]
6.52356021 -1550.60514317]
6.52356021 -1564.28720614]
6.52356021 -1577.96944911]
6.59685864 1577.96944911]
6.59685864 -1591.65160208]
.0 34.0
‘o 33
‘o 32
“0 30,
‘0 29,
‘0 26,
‘0 23
‘0 19,
‘o 16,
‘0 14,
to 11
9.0
°

0o
‘o8,

_images/data_view.png
Dataview + renderer example

_images/one_container_per_plot.png
800 Edit properties _

2000 2000
1000 1000
o o
1000 1000
0505 w0 0505 w0
2000
1000
o
1000

_images/ipython_multi.png
Chaco Plot

600

10
o075
0s

-

0z
05
ors

user_manual/tutorial_van_der_waal.html

 Navigation

 		chaco 4.3.0 documentation »

Modeling Van der Waal’s Equation With Chaco and Traits

Overview

This tutorial walks through the creation of an example program that plots a
scientific equation. In particular, we will model Van Der Waal’s Equation [http://en.wikipedia.org/wiki/Van_der_Waals_equation], which is a
modification to the ideal gas law that takes into account the nonzero size of
molecules and the attraction to each other that they experience.

Development Setup

In review, Traits is a manifest typing and reactive programming package for
Python. It also provides UI features that will be used to create a simple GUI.
The Traits and Traits UI user manuals are good resources for learning about the
packages and can be found on the
Traits Wiki [https://svn.enthought.com/enthought/wiki/Traits]. The wiki
includes features, technical notes, cookbooks, FAQ and more.

You must have Chaco and its dependencies installed:

		Traits

		TraitsGUI

		Enable

Writing the Program

First, define a Traits class and the elements necessary need to model
the task. The following Traits class is made for the Van Der Waal
equation, whose variables can be viewed on
this wiki page [http://en.wikipedia.org/wiki/Van_der_Waals_equation]. The
volume and pressure attributes hold lists of our X- and
Y-coordinates, respectively, and are defined as arrays. The attributes
attraction and totVolume are input parameters specified by the
user. The type of the variables dictates their appearance in the GUI. For
example, attraction and totVolume are defined as Ranges, so they
show up as slider bars. Likewise, plot_type is shown as a drop-down
list, since it is defined as an Enum.

We'll also import a few things to be used later.
from traits.api \
 import HasTraits, Array, Range, Float, Enum, on_trait_change, Property
from traitsui.api import View, Item
from chaco.chaco_plot_editor import ChacoPlotItem
from numpy import arange

class Data(HasTraits):
 volume = Array
 pressure = Array
 attraction = Range(low=-50.0,high=50.0,value=0.0)
 totVolume = Range(low=.01,high=100.0,value=0.01)
 temperature = Range(low=-50.0,high=50.0,value=50.0)
 r_constant= Float(8.314472)
 plot_type = Enum("line", "scatter")

....

Creating the View

The main GUI window is created by defining a Traits View instance.
This View contains all of the GUI elements, including the plot. To
link a variable with a widget element on the GUI, we create a Traits
Item instance with the same name as the variable and pass it as an
argument of the Traits View instance declaration. The
Traits UI User Guide [https://svn.enthought.com/svn/enthought/Traits/tags/traits_2.0.1b1/docs/Traits%20UI%20User%20Guide.pdf]
discusses the View and Item objects in depth. In order to
embed a Chaco plot into a Traits View, you need to import the
ChacoPlotItem class, which can be passed as a parameter to View just
like the Item objects. The first two arguments to ChacoPlotItem are the
lists of X- and Y-coordinates for the graph. The attributes volume and
pressure hold the lists of X- and Y-coordinates, and therefore are the
first two arguments to Chaco2PlotItem. Other parameters have been
provided to the plot for additional customization:

class Data(HasTraits):

 traits_view = View(ChacoPlotItem("volume", "pressure",
 type_trait="plot_type",
 resizable=True,
 x_label="Volume",
 y_label="Pressure",
 x_bounds=(-10,120),
 x_auto=False,
 y_bounds=(-2000,4000),
 y_auto=False,
 color="blue",
 bgcolor="white",
 border_visible=True,
 border_width=1,
 title='Pressure vs. Volume',
 padding_bg_color="lightgray"),
 Item(name='attraction'),
 Item(name='totVolume'),
 Item(name='temperature'),
 Item(name='r_constant', style='readonly'),
 Item(name='plot_type'),
 resizable = True,
 buttons = ["OK"],
 title='Van der Waal Equation',
 width=900, height=800)
....

Updating the Plot

The power of Traits and Chaco enables the plot to update itself
whenever the X- or Y-arrays are changed. So, we need a function to
re-calculate the X- and Y-coordinate lists whenever the input
parameters are changed by the user moving the sliders in the GUI.

The volume attribute is the independent variable and pressure is
the dependent variable. The relationship between pressure and volume, as derived
from the equation found on the wiki page, is:

 r_constant * Temperature attraction
Pressure = ------------------------ - ----------
 Volume - totVolume Volume**2

Next, there are two programing tasks to complete:

		Define trait listener methods for your input parameters. These
methods are automatically called whenever the parameters are
changed, since it will be time to recalculate the pressure array.

		Write a calculation method that updates your lists of X- and
Y-coordinates for your plot.

The following is the code for these two needs:

Re-calculate when attraction, totVolume, or temperature are changed.
@on_trait_change('attraction, totVolume, temperature')
def calc(self):
 """ Update the data based on the numbers specified by the user. """
 self.volume = arange(.1, 100)
 self.pressure = ((self.r_constant*self.temperature)
 /(self.volume - self.totVolume)
 -(self.attraction/(self.volume*self.volume)))
 return

The calc() function computes the pressure array using the current
values of the independent variables. Meanwhile, the
@on_trait_change() decorator (provided by Traits) tells Python to call
calc() whenever any of the attributes attraction,
totVolume, or temperature changes.

Testing your Program

The application is complete, and can be tested by instantiating a copy
of the class and then creating the view by calling the
configure_traits() method on the class. For a simple test, run these
lines from an interpreter or a separate module:

from vanderwaals import Data
viewer = Data()
viewer.calc() # Must calculate the initial (x,y) lists
viewer.configure_traits()

Clicking and dragging on the sliders in the GUI dynamically updates the pressure
data array, and causes the plot to update, showing the new values.

Screenshots

Here is what the program looks like:

[image: ../_images/vanderwaals.png]

But it could be better....

It seems inconvenient to have to call a calculation function manually
before we call configure_traits(). Also, the pressure equation depends on
the values of other variables. It would be nice to make the
relationship between the dependant and independent variables clearer.
There is another way we could define our variables that is easier for
the user to understand, and provides better source documentation.

Since our X-values remain constant in this example, it is wasteful to
keep recreating the volume array. The Y-array, pressure, is the
single array that needs to be updated when the independent variables
change. So, instead of defining pressure as an Array, we define
it as a Property. Property is a Traits type that allows you to define
a variable whose value is recalculated whenever it is requested. In
addition, when the depends_on argument of a Property constructor is
set to list of traits in your HasTraits class, the property’s trait
events fire whenever any of the dependent trait’s change events
fire. This means that the pressure attribute fires a trait change
whenever our depends_on traits are changed. Meanwhile, the Chaco plot
is automatically listening to the pressure attribute, so the plot
display gets the new value of pressure whenever someone changes
the input parameters!

When the value of a Property trait is requested, the
_get_trait_name method is called to calculate and return its
current value. So we define use the _get_pressure() method as our new
calculation method. It is important to note that this implementation
does have a weakness. Since we are calculating new pressures each
time someone changes the value of the input variables, this could slow
down the program if the calculation is long. When the user drags a
slider widget, each stopping point along the slider requests a
recompute.

For the new implementation, these are the necessary changes:

		Define the Y-coordinate array variable as a Property instead of an
Array.

		Perform the calculations in the _get_trait_name method for the
Y-coordinate array variable, which is _get_pressure() in this
example.

		Define the _trait_default method to set the initial value of
the X-coordinate array, so _get_pressure() does not have to keep
recalculating it.

		Remove the previous @on_trait_change() decorator and calculation
method.

The new pieces of code to add to the Data class are:

class Data(HasTraits):
 ...
 pressure = Property(Array, depends_on=['temperature',
 'attraction',
 'totVolume'])
 ...

 def _volume_default(self):
 return arange(.1, 100)

 # Pressure is recalculated whenever one of the elements the property
 # depends on changes. No need to use @on_trait_cha